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A large class of recursion relations xn+l = Af(xn) exhibiting infinite 
bifurcation is shown to possess a rich quantitative structure essentially 
independent of the recursion function. The functions considered all have a 
unique differentiable maximum 2. With f (2)  - f (x)  ~ Ix - 21" (for Ix - 21 
sufficiently small), z > 1, the universal details depend only upon z. In 
particular, the local structure of high-order stability sets is shown to 
approach universality, rescaling in successive bifurcations, asymptotically 
by the ratio c~ (a = 2.5029078750957... for z = 2). This structure is deter- 
mined by a universal function g*(x), where the 2"th iterate o f f ,  f("~, con- 
verges locally to ~-"g*(~nx) for large n. For  ithe class of f ' s  considered, 
there exists a A~ such that  a 2"-point stable limit cycle including :7 exists; 
A~ - ~ ~ ~-" (~ = 4.669201609103... for z = 2). The numbers = and 
have been computationally determined for a range of z through their 
definitions, for a variety o f f ' s  for each z. We present a recursive mechanism 
that  explains these results by determining g* as the fixed-point (function) 
of a t ransformation on the class o f f ' s .  At present our treatment is heuristic. 
In a sequel, an exact theory is formulated and specific problems of rigor 
isolated. 

KEY WORDS: Recurrence; bifurcation; limit cycles; attractor; univer- 
sality; scaling; population dynamics. 

1. I N T R O D U C T I O N  

R e c u r s i o n  e q u a t i o n s  x n + l  = f ( x ~ )  p r o v i d e  a d e s c r i p t i o n  fo r  a v a r i e t y  o f  

p r o b l e m s .  F o r  e x a m p l e ,  a n u m e r i c a l  c o m p u t a t i o n  o f  a z e r o  o f  h(x)  is o b t a i n e d  

r e c u r s i v e l y  a c c o r d i n g  to  

~h(x~) 
x,~+l = x,~ + h(x~ - ~) - h(x,~) - f ( x , )  

Research performed under the auspices of the U.S. Energy Research and Development 
Administration. 
1 Theoretical Division, Los Alamos Scientific Laboratory,  Los Alamos, New Mexico. 

25 

0022-4715/78[0700-0025505.00[0 �9 1978 Plenum Publishing C6rporation 



26 Mitchell  J. Feigenbaum 

If )7 = lim,~ ~ x,  exists, then h(2) = 0. As )7 satisfies 

= f(X) 

the desired zero of h is obtained as the "fixed point"  of the transformation f.  
In a natural context, a (possibly fictitious) discrete population satisfies the 
formula p~ + 1 = f(P,~), determining the population at one time in terms of its 
previous value. We mention these two examples purely for illustrative pur- 
poses. The results of this paper, of course, apply to any situation modeled by 
such a recursion equation. Nevertheless, we shall focus attention throughout 
this section on the population example, both for the intuitive appeal of so 
tangible a realization as well as for a definite viewpoint, rather different from 
the usual one toward this situation, that shall emerge in the discussion. It is 
to be emphasized, though, that our results are generally applicable. 

If  the population referred to is that of a dilute group of organisms, then 

P~+I = bp~ (1) 

accurately describes the population growth so long as it remains dilute, with 
the solution p~ = pob ~. For a given species of organism in a fixed milieu, b is 
a constant--the static birth rate for the configuration. As the population 
grows, the dilute approximation will ultimately fail: sufficient organisms are 
present and mutually interfere (e.g., competition for nutrient supply). At this 
point, the next value of the population will be determined by a dynamic  or 
effective birth rate: 

Pn + 1 = bafpn 

with bef f < b. Clearly bef f is a function of p, with 

lim bar(p) = b 
p--~0 

the only model-independent quantitative feature of ba,. Since the volume 
and nutrient available to a population are limited, it is clear that bef f "~ 0 for 
p sufficiently large. Accordingly, the simplest form of b~ff(p) to reproduce the 
qualitative dynamics of such a population should resemble Fig. 1, where 
bef~(0) = b is an adjustable parameter [say, the nutrient level of the milieu 
held fixed independent of p( t ) ,  and measurable by observing very dilute 
populations in that milieu]. A simple specific form of be,f is 

beg  = b - ap 

so that 

P~ + 1 = bp~ - ap~ 2 

By defining p~ ==- (b/a)x~,  we obtain the standard form 

x . + l  = bx . (1  - x,~) (2) 
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In (2) the adjustable parameter b is purely multiplicative. With a different 
choice of bell, x,  +1 would not in general depend upon b in so simple a fashion. 
Nevertheless, the internal b dependence may be (and often is) sufficiently mild 
in comparison to the multiplicative dependence that at least for qualitative 
purposes the internal dependence can be ignored. Thus, wi thf(p)  = pbeff(p) 
any function like Fig. 1, 

p~ +i = b f (pO (3) 

is compatible and representative of the population discussed. So long as 
f'(O) = 1 (so that the static birth rate is b and the dilute regime is correctly 
modeled) and f goes to zero for large p with a single central maximum, 
relation (3) correctly (at least qualitatively) models the situation. However, 
f2(P) = sin(ap) affords an (a priori) equally good modeling as f l ( P ) =  
p - apL Thus only detailed quantitative results of (3) could determine which 
(if either) is empirically correct. One should then ask what the dynamical 
behavior of (3) is wi th fas  in Fig. 1. It turns out that (3) enjoys a rich spectrum 
of excitations, with a universal behavior that would frustrate any attempt to 
discriminate among possible f ' s  qualitatively. That is, providing (3) affords 
an honest model of a population's dynamics, so far as qualitative aspects are 
concerned,f  is sufficiently specified by Fig. 1 : the data could not qualitatively 
determine any more specific form [such as (2), say]. Conversely, any such 
choice of f - - s ay  Eq. (2)--is fully sufficient for study to comprehend all 
qualitative aspects of the dynamics. If the data should in any way disagree 
qualitatively with the predictions of (2), then (3) for any bel ievablefmust  be 
an incorrect model. 

The qualitative information available pertaining to (3) for any f of the 
form considered (see Appendix A for the exact requirements on f )  is quite 
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specific and detailed. In discussing the numerical solution to h(x) = 0 a fixed 
point was considered. In a population context, a fixed point 

p* = bf(p*) 

signifies zero population growth: p~ = p* for all n. However, p* is "interest- 
ing" only so long as it is stable: i fp  fluctuates away from p*, it should return 
to p* in successive generations. For example, if g(2) is finite, then 

x . + l  = x .  + h ( x . ) g ( x . )  (4)  

will possess )7 as a fixed point if h(2) = 0. However, unless 

X~ --~ .X 

(4) is of no value to obtain 2; indeed, g is chosen so as to maximize the stability 
of)~. A stable fixed point is termed an "at t ractor ,"  since points in its neighbor- 
hood approach it when iterated. An attractor is "global"  if almost all points 
are eventually attracted to it. It is not necessary that an attractor be a unique 
isolated point. Thus, there might be n points x l ,  x2 ,..., 2~ such that 

2,+1 = f(2~), i =  1 .... , n  - i; 21 = f ( f n )  

Such a set is called an "n-point limit cycle." Every n applications of f return 
an )7~ to itself: each 2~ is a fixed point of the nth iterate of f ,  f("~: 

f(")(ff~) = 2i, i = 1,..., n 

Accordingly, {~1 ..... ~,} is a stable n-point limit cycle if each ff~ is a stable 
fixed point of f("~. If it is a global attractor, then for almost every xo, the 
sequence x,  = f('~(xo), n = 1, 2 ..... approaches the sequence 

Finally, there can be infinite stability sets {2~} with 

Y~ + ~ = f ( X 3  

such that the sequence x,  = f("~(Xo) eventually becomes the sequence {f,}. 
With this terminology, some of the detailed qualitative features of (3) can 

be stated as follows. (See Appendix A for more precise statements.) Depending 
upon the parameter value b, (3) possesses stable attractors of every order, with 
one attractor present and global for each fixed choice of b. As b is increased 
from a sufficiently small positive value, a fixed point p* > 0 is stable until a 
value Bo is reached when it becomes unstable. As b increases above B0, a 
two-poiflt cycle is stable, until at B1 it becomes unstable, giving rise to a stable 
four-point cycle. As b is increased, this phenomenon recurs, with a 2n-point 
cycle stable for 

B,~_I < b < B , ~  
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giving rise to a 2 n + 1-point cycle above B, until B, + 1, etc. The sequence of B, 
is bounded above converging to a finite Boo. This set of cycles (of order 2 ", 
n = 1, 2,...) is termed the set o f "  harmonics" of the two-point cycle. For any 
value of b > B= (but not too large) some particular stable n-point cycle will 
be present. As b is increased, it becomes unstable, and is replaced with a stable 
2n-point cycle. Until the cycle has doubled ad infinitum, no new stability sets 
save for these appear. Moreover, the ordering (with respect to b) of the onset 
of new size stability sets (e.g., seven-point before five-point) is also inde- 
pendent off .  Thus, if b is the unique parameter governing a population, any 
deviation of the ordering of stability sets upon increase of b from that deter- 
mined by (2), say, constitutes empirical proof that (3) for any believable f 
incorrectly models the population. On the other hand, if (3) is appropriate 
for some f,  then (2), for all qualitative purposes, comprises the full theory of 
the population's evolution. The exact quantitative theory reduces to the 
problem of determining the particular f .  Unfortunately, even if (3) might be 
applicable, the data of biological populations are too crude at present to 
significantly discriminate amongf ' s .  

With so much specific qualitative information about (3) independent o f f  
available, we may ask if the form of .(3) might not also imply some quantitative 
information independent off .  It is the content of the following to answer this 
inquiry in the affirmative. Thus, the local structure of high-order stability sets 
(the quantitative locations of all elements of a stability set nearby one another) 
is independent off .  The role of a specificfis to set a local scale size for each 
cluster of stability points and to set the spacing between them. If one plots the 
points of, say, a 28-point limit cycle of (2) (or any cycle highly bifurcated from 
some low-order one), then by unevenly stretching the axis, the same 28-point 
cycle of (3) for ano ther f i s  produced. The points are distributed unevenly in 
clusters sufficiently small that the stretching is essentially a pure magnification 
over the scale of a cluster. Moreover, for a fixed f ,  if b is increased to produce 
a 29-point cycle, that cluster about ~ (the maximum point) reproduces itself 
on a scale approximately a times smaller, where 

c~ = 2.5029078750957... 

whenfhas  a normal (i.e., quadratic) maximum. (This shall be assumed unless 
specifically stated otherwise.) The presence of the number ~ is a binding test 
on whether or not (3) is a correct model. ~ is a reflection of the infinitely 
bifurcative structure of (3), independent of any particularf. That is, the great 
bulk of the detailed quantitative aspect of solutions to (3) is independent of a 
specific choice o f f :  Eq. (3) and Fig. 1 comprise the bulk of the quantitative 
theory of such a population. Indeed, it is very difficult to extract the exact 
form o f f  from data, as so much quantitative information is determined purely 
by (3). In addition to ~, another universal number determined by (3) should 
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leave its mark on the data of a system described by (3). Thus, let b0 be the 
value of b such that ff (the abscissa of the maximum) is an element of a stable 
r-point cycle, and generally b, the value of b such that ff is an element of the 
stable (r x 2~)-point cycle n times bifurcated from the original. Then 

is universal, with 

b,+,  - bn 
= Jim <7;--:- b77+1 

3 = 4.6692016091029... 

It must be stressed that the numbers a and 8 are n o t  determined by, say, the 
set of all derivatives of (an analytic) f at same point. (Indeed, f need not be 
analytic.) Rather, universal functions exist that describe the local structure of 
stability sets, and these functions obey functional equations [independent of 
the f of (3)] implicating a and 8 in a fundamental way. 

2. QUALITAT IVE  ASPECTS OF B I F U R C A T I O N  
A N D  U N I V E R S A L I T Y  

For definiteness (with no loss of generality),fis taken to map [0, l] o n t o  

itself. At the unique differentiable maximum 02,f(02) -- 1, 

x , +  l = ~ f ( x , )  

and ~ lies in the interval [0, 1 ] to guarantee that if Xo ~ [0, 1 ] then so, too, will 
all its iterates. When )t = 02, 

A f(02) = g f(02) = 02 

and 02 is a fixed point (Fig. 2). There is a simple graphical technique to deter- 
mine the successive iterates of an initial point Xo: 

(a) Draw a vertical segment along x = x0 up to af(x ), intersecting at P. 
(b) Draw a horizontal segment from P to y = x. The abscissa of the 

point of intersection is xl .  
(c) Repeat (a) and (b) to obtain x,  + 1 from x~. 

It is obvious from Fig. 2 that ~ is stable. Stability is locally analyzed by linear 
approximation about a fixed point. Setting 

x ,  = X + ~ , ,  02U(x) - g ( x ) ,  g(02) = 02 

x . + l  = g ( x . )  ~ 02 + ~.+~ = g(02 + ~.)  = g(02) + ~ . g ' ( x )  + ... 

~.+~ = g'(02)~. + o ( ~ J )  
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Clearly ~ , -+  0 if Ig'(:7)[ < 1, the criterion for local stability. But g'(:7) = 
:7f'(2) = 0, so that 2 is stable. With r -- Ig'(2)[ < 1, 

~n Ct?. r n 

so that convergence is geometric for r r 0. For r = 0, convergence is faster 
than geometric, and ;t = 2 is that value of h determining the most stable fixed 
point. We denote this value of h by ~o. Increasing ~ just above ~o causes the 
fixed point x* to move to the right with g'(x*)  < 0. At h = Ao, g'(x*)  = - 1  
and x* is marginally stable; for )t > Ao it is unstable. According to Metropolis 
et al., (1) a two-point cycle should now become stable. Stability of either of 
these points, say xl*, is determined by [g(2)(xl*)[, where 

g(2)(x) = g(g(x)) ;  g(" + ~)(x) = g(g('~)(x)) = g"~)(g(x)) 

Accordingly, consider g(2)(x) when g'(x*)  < -1  (Fig. 3). Several details of 
Fig. 3 are especially important. First, g(2) has two maxima: this because :7 has 
two inverses for A > 2t0. Each maximum is of identical character to that of g: 
a neighborhood of x~ ) is mapped into a neighborhood about :7 by g; g has a 
nonvanishing derivative at x~ ), so that the imaged neighborhood is the 
original simply translated and stretched; accordingly, g applied to this new 
neighborhood is simply a magnification of g about :7. Thus, if g (x )oc  
Ix - :7]~ + g(2), z > 1 for Ix - :71 small, then g(2) oc Ix - x~)[ ~ + g(:7) for 
[x - x~)[ small. Similarly, the minimum (located at 2) is of order z. This is, 
of course, the content of the chain rule: g(")'(Xo) = I-I'~2d g'(x~) with x~ = 
g(~)(Xo) [g(~ -- x]. In particular, observe that 2 is a point of extremum of 
g(") for all n. Also, ifg(x*) = x*, then g(")'(x*) = [g'(x*)]L With g'(x*)  < - 1 ,  
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gC2~'(x*) > 1, so that g(2~ must develop two fixed points besides x*: these two 
new fixed points are a two-point cycle of g itself, and for ~ - A0 sufficiently 
small, 0 < g(2)~ < 1 at these points. Moreover, since g(xl*) = x2* and 
g(x2*) = xl*, the chain rule implies that g(Z>'(x~*) = g<2>'(x2*), so that each 
element of the cycle enjoys identical stability. As A is increased, the maxima 
of g<2~ (g(2~ = ~ at maximum) also increase until a value ~ is reached when 
the abscissa of the rightmost maximum x~ ~ = ~1- By the chain rule, the 
other fixed point is now also at an extremum, and must be at ff (Fig. 4). 

As ~ increases above ?t~, g(2~(ff) decreases below ~, so that g<2~, < 0 for 
the leftmost fixed point, and so, for the rightmost one. At A = A1, g(2~, = _ 1 
for both: otherwise the two-point cycle would always remain stable, in 
violation of the results of Metropolis et al. Thus, g(2~, < -1 for ~ > A1, the 
two-point cycle is unstable, and we are now motivated to consider gC~, as 
a four-point cycle should now be stable. Alternatively, the region " a "  of 
g(2> of Fig. 4 bears a distinct resemblance to g of Fig. 2 turned upside down 
and reduced in scale: the transition that led from Fig, 2 to Fig. 4 is now being 
reexperienced, with g(2> replacing g and g<4~ replacing g(2~. In particular, at 
A = ~2 > Az the fixed points o fg  (4~ beyond those o fg  (2~ will occur at extrema 
(Fig. 5). The region " a "  of g(4~ is again an upside-down, reduced version 
of that of g<2> in Fig. 4; the square box construction including ~ for g(2~ of 
Fig. 5 is an upside-down, reduced version of that of g in Fig. 4. Since the 
boxes are squares, the Fig. 5 box is reduced by the same scale on both height 
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and width from Fig. 4. Accordingly, the regions " a "  are also rescaled 
identically on height and width. 

It is very important to realize that in Fig. 5, g itself was not drawn since 
it is unnecessary: #2) is sufficient to determine g<O: 

g(~)(x) = g ( g ( g ( g ( x ) ) ) )  = g ( g ( # 2 ~ ( x ) ) )  = g(2)(g<2)(x)) 

[and similarly, g(2n + 1)(x ) = g<2~)(#2~(x))]. At the level of discussion of Fig. 5, 
g~2> has effectively replaced g as the fundamenta] function considered, g(2~, 
though, is not simply proportional to A, possessing internal A dependence: the 
underlying role of g is exposed by g(2> in the simultaneous occurrence of the 
two box constructions. Similarly, by the nth bifurcation, only g(2~-1> and 
g(2.) are  important. If  at A~ + 1 (at A = An, s is an element of a 2~-point cycle) 
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we magnify the box containing 2 o fg  (2"~ and invert it to overlay that o fg  (2"- 1~ 
at A = A, (Fig. 6), we have two curves of identical order of maximum z, of 
identical height with identical zeros. Through a set of operations, g~2~-1~ 
determines g(2,~, just as will g(2-~ determine #2,+ i). Referring back to Fig. 4, 
observe that the restriction ofg (2~ to the interval between maxima is determined 
entirely by the restriction of g itself to this same interval. The region " a "  of 
g(2) is determined by g restricted a smaller interval plus essentially just the 
slope of g at A1 if g is sufficiently smooth. Analogously, the restriction of g(2~ 
to its box part is determined through a similar restriction ofg  (2"-1~. With the n 
scale reductions that have taken place by this level of iteration, g(2-~ is deter- 
mined by g restricted to an increasingly small interval about ff together with 



Quantitative Universality for Nonlinear Transformations 35 
y-i 

f 

- -- 9-- (z-n) (Xn+l} I" 

Fig. 6 

x - i  

the slope of g at n points. These slopes determine only the absolute scale of 
g~2,~: its shape is determined purely by the restriction of g to the immediate 
vicinity of s If  we now set by hand the scale of a magnified g~2,) so that the 
square is of unit length, then the role of the n slopes is eliminated. Accordingly, 
we now conjecture that the rescaled g~2,~ about ~ approaches a function g*(x) 
independent of  f ( x )  for all f ' s  of  a f ixed order of  maximum z: g* depends only 
on z. It remains now to make this discussion formal, exactly defining the 
rescaling and the function g*. The above heuristic argument for universality 
regrettably remains in want of a rigorous justification. However, we have 
carefully verified it, and all details to follow by computer experiment. In a 
sequel to this work we shall establish exact equations and isolate specific 
questions whose resolutions would establish the conjecture. 

3. THE RECURSIVE NATURE OF SUCCESSIVE BIFURCATION 
We have described a process that can be summarized as follows. 

(0) We start at A = A~, and look at g~2,~ near x = s Alternatively, we 
might look at g~2--1) for the same A and range of x, as depicted in 
Fig. 7. 

(i) Form g<2"~(x) = g~2~-~)(g<2~-~(x)), depicted in Fig. 8. 
(ii) Increase A from Am to A~ + 1, depicted in Fig. 9. 

(iii) Rescale: g~2"~(x) --~ ung~2"~(x/%~), depicted in Fig. 10 (],] > 1). 

Calling the operations (i)-(iii) B~_ 1, we have 

g.(x) = B . _ l [ ~ . _ l ( x ) ] ,  n = 2,  3 . . . .  

and are claiming g.(x) -+ g*(x) locally about s 
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Clearly (i) of Bn is recursive and n-independent; we call this part of B~ 
"doubling." We will motivate that (ii) becomes asymptotically n-independent; 
we term this part of B~ "h-shifting." Also, with a m --~ a essentially by (i), part 
(iii) of B~ becomes asymptotically n-independent; we term this part (obviously) 
"rescaling." Thus, Bn ~ B. That is, 

lim B * [ ~ ( x ) ]  = g*(x) 
r ~ o o  

or2 n ) 

Fig. 8 
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Accordingly, g* satisfies the equation 

g* = B[g*] (5) 

Universality, thus, is the consequence of a recursion on the class of functions 
f(x) considered. Under high-order bifurcation, the fixed point of B is 
approached--that fixed point being, within a certain domain, a property of B 
itself and not of the starting f(x). Evidently, domains of the various fixed 
points of B are disjoint for different z. Also, each fixed-z domain clearly 
exceeds the class of f ' s  specified by properties 1-4 of Appendix A, since 
(f)~2~ for each n is also in the domain. At present we cannot specify just how 

/ 
an(), - i )  

ang (Z n) I x lanl / 7 / ~  

/ ' ~ - /  *" I ' - ;  I x �9 ~.+, ) 
Fig. 10 
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large this domain is. The fixed-point equation (5) will certainly, for a given z, 
determine the rescaling ratio a as well as g*. [For a variety of funct ionsf(x)  
with z = 2, we have determined g*, with J7 of Fig. 10 set to unit length.] 

4. DETAILED FEATURES OF THE B I F U R C A T I O N  
R E C U R S I O N  

We first indicate roughly how the parameters a and ~ are interrelated and 
determined by g*. At A = h,, g~-i  and ~ _ 1  ~ ~ - 1  appear as in Fig. 11. 
Increasing h has g~_ 1(0) increase above 1, producing Fig. 12, where #~_ 1 and 
g~-i  ~  at h~ are shown dashed. By the definition of a~, h, of Fig. 12 
satisfies 

h,, = a ;  1 

Clearly, though, in some rough sense 

h ,  _.= (h~_l - 1)1g~_1(1)1 ---- , ~ h . _ d g ; , _ ~ ( 1 ) l  

i.e., 

Also, 

ah=_~ _ I~gZ_10)1-1 (6) 

8h._~ _~ I#~_~(I) 1-18h._I (7) 

This is more nearly accurate than (6), since #._ 2 shifts less than #._ 1 for the 
same A increase. Thus, 

li 

ah._l - 1-[ Ig~-,(OI 8ho (s) 

)'n 

I 

\ 

/ 

X#" i 

/ I 
/ 

\~'.., 
Fig. 11 
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However ,  ~ho = ~A~ = A~.I - A~. Assuming 4 ~ - + g *  (this is not  quite cor-  
rect ;  see Section 5) one has, so far  as n dependence is concerned,  

8h,,_~ ~ ~ l g * ' ( 1 ) l  ' , -1 ~ .  (9 )  

with/~ ~ 1 an asymptot ical ly  n-independent  factor. Substi tuting in (6), 

with ~ = lira a . .  
Accordingly,  ~A. ~ 3-" ,  with 

8 _~ <~lg*'(1)l (10) 
For  z = 2, the computer -exper imenta l  value for  [g*'(1)[ is 41.89, to be 
compared  with 3/a = 1.87. 

With  f ( x )  real-analytic in an arbi trar i ly small domain  abou t  if, the 
manner  in which the 4~ are fo rmed ensures for  them a systematical ly larger 
domain  of analyticity. With  4 , - -~  g*, an equivalent  procedure  for  defining 
the ~, is to require (at least one-sided) agreement  in ~(,2~(0). One has 

~ . ( x )  = 1 - i x ? ( a  + bx 2 + "") (11) 

Then,  

4.0  g.(x) = 1 - a14 .1  ~ - b14.1  ~+~ + - . .  

= 1 - a l l  - a l x l = . . . I  ~ - b l l  - alxl ~ + . . ' l  ~+~ + "" 

= 1 - a - b + . . .  + a [ a z l x i  ~ + . . .  + b ( z  + 2 ) I x ?  + - - . }  

= ~ . ( 1 )  + a i x i f f l  - g . ' ( 1 ) ]  + . . .  

= a l x l f f l  - g j ( 1 ) ]  + . . .  
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Next,  the A shift is performed:  

~ . - + ~ ,  o f . - - , - v  + ,arxl~[1 -~ . ' (1)1  + . ' -  

a n d  finally, a rescaling: 

g . - - > - { 1  - t~(a/a~-l)[1 - ~ * ' ( 1 ) l l x l  ~ + ...} (12) 

For  (11) and (12) to agree, one has 

a ~-1 ~ 1 - g*'(1) (13) 

where /L ~< 1 corresponds to A-shifting being mostly a displacement in the 
immediate  environs of  2. Again, for  z = 2, one compares a = 2.50 with 
I - g*'(1) = 2.87. Combining (10) and (13), one has 

3 ~ ]g*'(1)][1 - g*'(1)] 11~-1 (14) 

While (13) and (14) are crude, they are roughly correct  for z >~ 2, but  more 
important ,  indicate that  g* ultimately determines everything, 

We now proceed to describe the situation more  carefully, tacitly assuming 
convergence, and successively illustrating its details through consistency 
arguments.  

By definition 

g*(x )  = lim(-1)'~a'~g(2"~(x/a", A. + 1) - lim ~.(x) (15) 

where a" is symbolic for a .  which becomes asymptotically a multiple of  a~: 
the multiple has been absorbed in g(2.>. For  all n, 4 .  satisfies 

g.(1) = 0, 4.(0) 1, g .  ( ) 0 (16) 

and near  x = 0, 1 - ~.(x) ~ Ix[ ~. 
We now furnish an approximate equation for g* : 

(-1)"a"-lg~2")(x, A.) = ( -1)"a"- lg(2"-~)(g(2"-~)(x ,  A.), A.) 

= (-1)'~a"-lg(2"-x)(aJ~_l_l a"- lg(2"-X)(x,  A,~), h . )  

= - ~ .  o ~ . ( x a "  - 1) ( 1 7 )  

o r  

o r  

o r  

(-1)"~x"g(2")(x/cz ", A.) = - a~,. o ~,,~(x/a) (18) 

- a ~ , . o  ~ . ( x /a )  = g,n+ l (x )  - (-1)%d~(gC2")(x/~., An+l) - g(2")(x/a.,  ;%)) 

-a f t , .  o ~ . ( x /a )  ~_ ~.+ l (x )  - (-1)"a"(A.+l  - A.) Oag(~")(xflz,~, h,~) 

assuming a " m i l d "  A-shifting. 

(19) 
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Clearly, ~" 8ag(~")(x/a,~, h.) diverges with n since h. + 1 - h. --~ 0. Thus, a 
more  careful analysis, like that  used to treat  Eq. (10), needs to be done. 
By (17), 

8~g~)(x ,  )~) = ~g(9"-Z)(g(~"- Z)(X, '~n), a~) 

+ ~g(2"-~)(g(2"-~)(x, An) , A.) 8~g(~"-~)(x, A.) 

= 8~g(~"-~)(g(~"-~)(x, An), A~) 

+ e x g . -  l ( g . -  ~(x/~ n- ~))e~g<~" - ~(x, ~.) 

So, 

+ l(x)o   g 2n 1,( x ) ~-~, ~ (20) 

At x = 0, 

~n 8~g(2.~(0, .~,~) = ~. 8~g(2.-1~(1/c~,~-1, ,~,~) + ~_ l (1 )~n  8~g(2.-1~(0 ' An) (21) 

With 

(such a/~ exists if )~-shifting becomes n-independent),  (21) becomes 

c~ ~ 8ag(2")(0, An) = [tz + ~,~-1(1)]~ n Sag(2"-')(0, An) 

[t~ + ~'(1)]c~" 8~g(2"-~)(0, A.-1) (22) 

(g(2.-1) shifts more  slowly than g(2-~: higher order  ~ derivatives have been 
neglected). I terating (22), one has 

8~g(2")(0, A.) ~_ p[/z + ~'(1)]" (23) 

with p ~ 1, n-independent.  So, 

(-1)~(A.+~ - ;~n)~ n e~g~2")(0, ~.) ~ p[~,(-g'(1) - t~)]"(a.+~ - ~n) 

By (19) this is n-independent,  and so, 

)t.+l - ~ n  ~ 3-~ 

with 

a _~ ~ ( - g ' ( 1 )  - t~) (24) 

Defining/~.(x) = (-1)"c~"(An+l - An) 8ag(2")(x/c~., A.), (19) reads 

g . +  ~(x) = ~ . ( x )  - ,~g. o gn(x/~,) (25) 
or 

g * ( x )  = h * ( x )  - ~ g * o  g*(x/~,)  (26) 



42 Mitchell  J. Feigenbaum 

Returning to (20), multiplied by h~+l - h. ,  neglecting higher order derivatives, 

~.(x) ~- - co(~_1 ~ ~ . -  l(x/a) + h._ l(x/a)C'g" -1 ~ ~ . -  ~(x/a)) (27) 

with some o~ ~ 1, or, as n --~ c~, and repeating (26), 

h * ( x )  = - o~(h* o g * ( x / a )  + h * ( x / a ) g * '  o g * ( x / a ) )  

and 

g * ( x )  = h * ( x )  - ,~g* o g*(x /a )  (28) 

These constitute first-order (approximate) fixed-point equations, satisfying the 
boundary  conditions 

g*(0) = 1, g*'(0) = 0, g*(1) = 0, h*(0) = 1 (29) 

[We comment  that  (28) is recursively stable, and for z = 2 affords a 10Yo 
approximate solution.] 

At this point, some remarks concerning convergence (say of  ~ - - ~  g*) 
are in order. The function g*(x) describes the stability set for large n in the 
vicinity of  ~: those x~ such that  

g* o g * ( x 3  = x~ 

[and, of  course, g*'(g*(x~)).g*'(xO = 0] are the stability set points near ft. 
Accordingly, all such x~ scale with a upon bifurcation: I x~ - xs] -+ (1/a) lx~ - xsf. 
For  example, the distance between ~ and the nearest element to it of  the 
stability set of  order 2 n is a times greater than that  distance in the stability set 
of  order 2 n + ~. (Also, if xl  is the nearest point  to ~ and x2 the next nearest, then 
for all n large enough, t)7 - xll/l z - x21 - 7 is fixed.) This immediately leads 
to a difficulty: distances near ~ and those near A, (the furthest right element 
of  a stability set) cannot  possibly scale identically. 

�9 As is obvious from Fig. 13, with A the distance from s to xt, and d,  the 
distance from An to J? (the next to r ightmost point), d,  ~ A, ~, so that  with 
A n ~ a -n, 

d. oc ( ~ ) - n  # a -n  (30) 

Thus, convergence of  g.(x)  to g*(x) must be local in nature.  The scale for  
which g*(0) = 1 and g*(1) --- 0 is, of  course, a - "  finer than usual measure on 
[0, 1]: for large n, suplg.  - g*[ < Eu. for  ix] < N.  is uniform convergence 
in " r e a l "  x of  Ix] < N/~". To allow for a shifting rescaling of  parts of  g*, 
Nn << a". Thus, one anticipates that  gn ~ g* (say in sup-norm) over any 
bounded part  of R but with the g*(1) = 0 measure. In any (small) interval 
about  a given point  in the stability set of  order  n, one sets the origin o f g  ~2~ at 
the point  in question and forms g.  with an appropriate  (local) scale factor. As 
n increases, in the gn(1) = 0 measure, any other  point  a finite distance away 
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in usual  [0, I ] measure grows far remote from the chosen point :  so far, that  
the local ~.  never converge to it. Thus, in effect, a class of  g* exist, each 
determining the large-n limiting stability set about  a point. 

For  example, defining f . ( x )  about  A.+ 1 by Fig. 14 [xn = g(2")(A.+l), 
,~+ 1 = g(2")(x.)], we have 

J~(x) = [g(2"'((A.+l - x , , )x  + x,,) - x.] / (Z.+l  - x ~ ) - - > f * ( x )  (31) 

[so t ha t f . ( 0 )  = 1, f . ' (0)  = 0 , f . (1 )  = 0]. In the nota t ion of  Fig. 13, 

f . ( x )  = [g(~~ + x . )  - x . ] / d .  

and s o l .  scales by d z ra ther  than d. It is s traightforward to relate f *  to g*: 

g(2~(A,,+ l f ( x ) )  = )t.+ ~f(g(2")(x))  (32) 

-S 
! - - -  g ( 2  n ) 

I 
I i 
I I 
i I 

Xl Xn )~n41 

Fig. 14 
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so that  for x ~ 0 (we have conveniently set X = 0), ,~, ,+lf(x)  is near ~ §  and 
(32) relates g(2.~ about  A~. 1 to g(2~ about  0. Thus 

x small =~ )~.+~f(x)  = h~+~ - aa.+dxl ~ + O(Ixl~+0 

g(2"~(;t~§ = g(2"~((~§ - x~)(1 - alx[O - ax, , lx l  ~ + x , )  

1 = x .  + (h,~+~ - x .  1 - a l x [  ~ 1 , , + 1  - x .  

Also, 
(2 n) a . + l f ( g  (x))  = ,~..§ - aa,.+dg<2"~(x)[ ~ + "" 

= ,X.+l - aa .+l / , .~l~.(x/A.) l  ~ 

Accordingly, (32) implies for  small x that  

 /X x,X, ll 
By Fig. 14, 1~+ 1 - x~ = d~ = aA,~h,+l ,  so that  

-x(1 I 
o r  

1 - f ~ ( 1  - l x l ~ / z x : ) =  I~(x/A~)l ~ 

f~(1 - I~ [0  =-1~.(~)? + 1 

o r  

o r  

f,~(x) = - 1 ~ ( ( 1  - x)l/")[ z + 1 + .-. 

For  large n, neglected terms are powers of  A~ --> O. So, 

f * ( x )  = - [g*( (1  - x)l/O[* + 1 

(33) 

(34) 

and g* determines f * .  (This has, of  course, been computat ional ly verified to 
full precision.) We are unsure of  the size of  the set of  rescalings: clearly ~ and 
c~ ~ belong to the set. However,  about  any point  a fixed, finite number  of  
iterates prior to )7, scaling goes by ~, whereas any region a finite number  of  
iterates after h, + 1 scales with cd. On the other hand, points 2 ~- 1 iterates f rom 
)7, as well as 2 ~-2 ..... 2 ~-N f rom )7, are just the N points nearest )7 that  scale 
with ~. That  is, we are uncertain how to define a region which possesses a 
scaling intermediate between ~ and ,~; possibly the situation is simply an 
interspersal o f  regions scaling by either ~ or  ~ .  What  is missing is some notion 
o f  ordered measure along a stability set. 

At  this point  it is perhaps illuminating to indicate just what  g* looks like. 
Evidently Fig. 5 is a somewhat  distorted version of  g* very near x ' =  0. 
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Indeed, each large jump generates precursors about more mild features. At 
successive levels of ~n, more and more precursors are produced, whose 
oscillations grow narrower. Also, g* grows with [x[, with a long string of 
features of roughly the same height as the end height of the string. Figure 15 
shows g* for Ix i < 50 as computationally obtained. Evidently, convergence 
to such a function worsens with increasing Ix]. 

5. CONCLUSIONS AND A BRIEF S U M M A R Y  
OF THE EXACT THEORY 

In this paper we have attempted to heuristically motivate our conjecture 
of universality, and indicate the form of an exact theory of highly bifurcated 
attractor sets. Our conclusion is that both of the numbers ~ and 3 as well as 
the local structure of highly bifurcated attractors as determined by the universal 
function g* are determined by functional equations. We have provided 
approximate such equations, but failed in establishing exact equations for an 
inability to exactly reflect an increase in the parameter ;~. As described, the 
local structure determined by g* pertains to values of A asymptotically near 
)~| at the specific values ~,: we have not described that structure for values of 
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A between ~, and A, + 1. However, at these choices of A, the theory we describe 
holds regardless of the attractor from which the bifurcated attractors arise. 
(That is, ~, refers to that attractor of order m. 2 ", which includes the critical 
point 2 for any m.) Or, the local structure of  all infinite attractors of x ,  + 1 = 
1f(x,) is described by g*. Also, the rescaling parameter ~ and the convergence 
rate 3 are common to all highly bifurcated attractors. 

At this point we should like to briefly summarize some results of the 
exact theory; a full treatment of  these results will shortly appear in a sequel. (2) 

Figure 5a shows, near if, what shall evolve into g*, and represents the 
local structure at a '~  level. Figure 5b represents the graph of a 
function that shall evolve into g* o g*, and accordingly must also be universal: 
it represents the identical local structure as does g*, but now at a "one-po in t"  
level of description. Evidently, one can view this local structure at a "2r-point"  
level from the function 

gr(X) = lim ( -a )~2" ) (~ ,+~ ,  x/(-a)~) ,  r = 0, 1, 2 .... (35) 
n ~ c o  

where g~(x) is exactly g*(x). All gT are of  identical qualitative shape: each 
bump of g~ aligned along y = x contains two points of  an attractor set, 
whereas each bump of gT similarly situated now contains 2 r points of  that set. 
Evidently, the lower r, the more magnified the local structure. Following 
immediately from the definition, 

gr - l(X) = -- agr(gr(X/e~)) (36) 

(all the functions g~ are symmetric). The content of this equation is essentially 
the Cantor-set-like nature of highly bifurcated attractors: at each bifurcation, 
the rough locations of attractor points are unchanged, with a "microscopic"  
splitting of each such point; the scale of splitting is ~ below the previous level, 
so that rescaling by c~ after a bifurcation reveals the set at a next level of 
magnification. In fact, (36) provides the entire exact description, as we now 
synoptically elucidate. The central bump of g~ is effectively a hf(x) containing 
a T-point  cycle, which, as r increases, quickly approaches a hfcontaining the 
infinite attractor. That is, one expects 

g(x) = lim gr(x) (37) 
r - - * ~  

to exist; g no longer affords the same description of attractor points as does 
gT. Rather, g is the description at the level of infinite clusters of points, which 
is again a universal property. But g defined by (37) is simply a fixed point of 
(36). Accordingly, 2 

g(x) = - ~g(g(x/~)) (38) 

This exact equation was discovered by P. Cvitanovi6 during discussion and in collabora- 
tion with the author. 
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The great virtue of g is that • has been set at ~ at the outset, and so the 
difficulty of modeling A-shifting is totally bypassed. The price paid for this is 
that (38) defines no recursively stable equation like 

g .  + z(x)  = - a . g . ( g . ( x / ~ . ) )  (39) 

[By (36), iterating produces gr's for smaller values of r and hence diverging 
from g.] There are a variety of ways to solve (38). A method based on the 
fact that g0(x)=f (A~(f )x)  m u s t  cause (39) to converge [by (35), g = 
lira(-a)"g(~")(A=, x / ( - a ) ~ ) ]  together with the general recursive instability of 
(39) allows very fast, high-accuracy estimates of all A= for any chosen f. 
Alternatively, one can simply solve (38) by a numerical functional-Newton's 
method. (The result of the latter method is a 20-place determination of both 
a and g for z = 2.) 

The g of (38) is a fixed point of (36). By setting 

g = gr + Yr 

in (38), employing (36), and expanding to first order in y, one obtains 

Y r -  l ( X )  = - -  a[y~(g(x /~) )  + g ' ( g ( x / a ) ) y r ( x / a ) ]  (40) 

(40) simply separates with the substitution 
Yr = )t - r~b(X) (41) 

where ~b obeys 

~c~~ = -c~[~b(g(x/a)) + g'(g(x/a))~b(x/a)]  = ),~b(x) (42) 

The eigenvalue A can clearly attain the value +I corresponding to 

r  

reflecting the dilatation invariance Of (38). In addition to a spectrum IAI ~< 1, 
computationally there exists a unique alternate value 3 strictly greater than +1. 

It is possible to show that the eigenvalue 3 is exactly that convergence 
rate discussed in this paper. Heuristically, if ~ is held fixed at A. for n >> 1, and 
A~fiterated, it is indistinguishable from the iterates of A~fthat  approximate 
g after an initial transient, until roughly n iterations have been performed to 
magnify the deviation of A. from ~ .  Thus the argument about Eq. (8) can be 
made exact where the function ~._ ~ there is essentially g for (logarithmically) 
all iterations. 

One can next begin to investigate the nature of the n limit of (35). Defining 

g~..(x) - ( -  ~)"~(~")(a. + .  x / ( -  ~)") 

it is immediate to verify that 

g r -  l,n + l ( x )  = -- e~gr,n(gr,n(-- X/a))  (43) 
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But (36) is the large-n fixed point  of  (43), and so one can discuss in linear 
approx imat ion  the stability of  (36). (We ment ion  at  this point  that  the anti- 
symmetr ic  parts  of  gr.n vanish in the large-n limit at the rate of  - ~ ;  this result 
is exactly observed computat ional ly .)  

With ~ and g obta ined f rom (38), (42) determines bo th  h and & (Again, 
both  have been obta ined to 20-place accuracy.)  We stress tha t  (38) and (42) 
are totally free of  any reference to (1) and do produce the same a and 3 to the 
14-place accuracy of our best recursion data. Next,  

g~ ,.~ g - 8-rh  (44) 

so that  a g~ for r >> 1 is available. By successive applicat ion of  (36) to this 
asymptot ic  g~, gl can be obtained.  (Regarding r = 3 as asymptot ic  produces 
a gl to six-place accuracy, to give an idea of  the speed of  onset of  the asymp-  
totic regime.) The approx imate  equations (28) are a high-z approximat ion  to 
(38) and (42). 

Since 8 - r  ~ ;% - ;% (44) has an immediate  cont inuat ion:  

g~(x) ~ g (x )  - (aoo - A)h(x) 

which allows the determinat ion of  local structure for h between An and An + 
as well. Thus, the bifurcat ion points  A n also geometrical ly converge to Ao~ at  
the rate 3, and logari thmically the behavior  of  bifurcation is periodic with 
period log 3. A demonst ra t ion  tha t  (36) is in fact a stable fixed point  o f  (43) 
would consti tute a p r o o f  of  our universality conjecture:  with exact  (functional) 
equations at hand, it is possible to focus on the exact details requiring p r o o f ?  

A P P E N D I X  A 

In the formula  x . + l  = hf(xn) with 0 < A < 1 , f (x)  satisfies the following 
condit ions:  

1. f ( x )  is continuous,  single-valued, piecewise C m on [0, 1] possessing a 
unique, differentiable m a x i m u m  at ~ with f (~ )  = 1. 

2. f ( x )  > 0 on (0, 1), f (0 )  = f (1)  = 0, and f is strictly decreasing on 
(2, 1) and strictly increasing on (0, ~). 

3. For  A 0 < h < 1, h f (x )  has two fixed points [x* = 0, and some other 
x* ~ (x, 1)] bo th  of  which are repellant (i.e., [f '(x)] > l/A). 

4. In the interval N about  9~ such that  [f '(x)[ < 1 , f i s  concave down- 
ward. 

3 We are in possession of extensive high-precision data pertaining to all details discussed 
in this paper, as well as for the solutions to the functional equations discussed in the last 
sections. We will consider reasonable requests from individuals for copies of specific 
parts of this library. 
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Given these conditions, Metropolis et  al. (1~ have established among others the 
following universal, qualitative features: 

(a) For A0 < h < A~, there exists stability sets of order 2", n = 1, 2 .... 
only, with n increasing with A. 

(b) For A o < A~-I < A < A~ < h~ only 2~-order stability sets exist. 
In particular, at A,, with A,_ 1 < A, < A,,  the 2"-order stability set contains 
s as an element. 

(cl) For h = hi, under repeated application of hf, one has i f -+  x' --~ 
:7-+ ..., where x' > ~. Calling an x " R "  if x > s and "L"  if x < s the 
"pa t t e rn"  of motion through the stability set is abbreviated as R--meaning 
.3~ ---~ R ---> 0~. 

(c2) The "harmonic"  of a pattern P is a stability set of twice the order 
of P, with pattern PLP if P contains an odd number of Rs and PRP otherwise. 
The 2~-order stability sets are exactly the successive harmonics of R (e.g., for 
h2, RLR;  for A3, RLRRRLR;  etc.). 

(d) If P is a basic pattern (say, for an r-point cycle), then (a)-(c) hold 
with 2" replaced by r. 2 ". 

A P P E N D I X  B. C O M P U T A T I O N A L  RESULTS 

The parameter values As for a given recurrence function f are obtained 
by definition from 

O J ) ~ 2 " ~ ' ( x )  - :~ = 0 (B1)  

(B1) possesses in general many roots. Accordingly, A0 is first obtained for a 
given fundamental pattern. A is slowly increased to find the first new zero for 
n --- 1 ; this A by definition is A1. Next, Ag~ is similarly found as the next largest 
zero of (B1) for n = 2. At this point 31 is calculated 

a l  = (A1 - A0 ) / (A2  - A~) 

and used to estimate-predict A3 

A3 - A2 + 3~-1(A2 - A1) (B2) 

As n increases, ~. -+ ~ and the predicted value increases in precision, so that 
for large n, several Newton's-method iterations suffice to locate h, to full 
precision. Since the number of iterations increases geometrically and the 
number of zeros of (B 1) similarly increases with collateral decrease of spacing 
between them, the prediction method is essential to locate high-n h's. (For 
example, the set of all h~ up to n = 20 for f = x - x 2 to 29-place precision 
requires just a few minutes of CDC 6600 time.) 
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A n a l o g o u s  to 3 . ,  one  can  also c o m p u t e  the  rate  of  convergence  of  3. to 3 
t h rough  3 . ' :  

3 . '  - (3.+1 - 3.) / (3.+2 - 3. + 1) 

W i t h  A. of  29-place accuracy,  3. converges  to 3 to 13 places by  n = 20 and  
~ . '  converges  to  three  or  four  places. W e  q uo t e  some  typical  resul ts  in  
Tab les  I - I I I .  Observe  t ha t  for a n f s y m m e t r i c  a b o u t  its m a x i m u m ,  3' _~ 3 for 
z ~< 2, whereas  3' < 3 for z > 2. As re la ted in  the text,  we shall  exp la in  these 
resul ts  in  the  sequel  to this work.  

W i t h  the  A. de te rmined ,  the  p a r a m e t e r  ~ is nex t  ob ta ined .  W e  t r a n s f o r m  
to var iables  in  which  ff = 0. The  e l emen t  of  the  l imi t  cycle neares t  to ff is 
o b t a i n e d  as the  2 ~-  z i tera te  of  97, 

and  the n th  rescal ing ~ . ,  def ined by  

(Zn ~- - -  Zn/Zn  + 1 

These  a~ converge  to c~, also typical ly  to 13 places. 

T a b l e  I. a T w o - C y c l e  D a t a  f o r  f = 1 - 2x  2 

N ~ ~ ~' 

1 0.7071067811865475244008443621 4.74430946893705 - -  
2 0.8095377203493463168459541018 4.67444782765301 2.7504 
3 0.8311279938830304702482833891 4.67079115022921 6.7888 
4 0.8357467797438888850823009395 4.66946164833746 3.7990 
5 0.8367356455938705846037094966 4.66926580979910 5.2553 
6 0.8369474185828047108022721846 4.66921427043589 4.3595 
7 0.8369927732483047323090713162 4.66920445137251 4.8560 
8 0.8370024868024425943459682976 4.66920220132661 4.5641 
9 0.8370045671470149993313732630 4.66920173797283 4.7307 

t0 0.8370050126930596349457550266 4.66920163645133 4.6340 
11 0.8370051081153758334851887620 4.66920161499127 4.6896 
12 0.8370051285519137318702724660 4.66920161036023 4.6575 
13 0.8370051329287943173583990344 4.66920160937272 4.6759 
14 0.8370051338661881055761765511 4.66920160916069 4.6684 
15 0.8370051340669491492492744646 4.66920160911533 
16 0.8370051341099460169105929249 4.66920160910564 
17 0.8370051341191546292732244007 
18 0.8370051341211268320465365015 

In this and the following tables, the cycle of size 2 N for two-cycle data and 
3 • 2 u-1 for three-cycle data is referenced by N. The parameter is denoted by 
,~; 3N = (,~N+~ - ,~)/(,~+2 - ,~N-~) and ~ '  = (3N+~ - 8N)/(3N+2 -- 8~+a). 



Q u a n t i t a t i v e  U n i v e r s a l i t y  f o r  N o n l i n e a r  T r a n s f o r m a t i o n s  

T a b l e  I1. ~ T h r e e - C y c l e  D a t a  f o r  f = 1 - 2x  2 

N ~ 
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1 0.9367170507273508470331116496 
2 0.9415128526423905912356034646 
3 0.9429387098616436488660308130 
4 0.9432609362079542493235619775 
5 0.9433308082518413013515037559 
6 0.9433458109574302537416522425 
7 0.9433490258695502652989696376 
8 0.9433497144865745558168755447 
9 0.9433498619710069020581737454 

10 0.9433498935578274276740167548 
11 0.9433499003227649872965866091 
12 0.9433499017716078115042431354 
13 0.9433499020819055832053356825 

See footnote to Table I. 

3.36345171892599 
4.42501749338226 
4.61166338330503 
4.65729621052512 
4.66659897033153 
4.66865036240409 
4.66908278613357 
4.66917625427465 
4.66919616732989 
4.66920044506702 
4.66920135962593 

5.6876 
4.0902 
4.9053 
4.5349 
4.7439 
4.6264 
4.6938 
4.6550 
4.6774 
4.6774 

N 

T a b l e  II I .  ~ T w o - C y c l e  D a t a  f o r  f = x(1 - x 2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.121320343559642573202533087 
2.262989654536347189784554781 
2.293843313498357530752158008 
2.300474702160290747102709771 
2.301896029336062330642744423 
2.302200483941469550298303234 
2.302265691081575248478773452 
2.302279656559069020367088264 
2.302282647541496096694814784 
2.302283288118560038898131427 
2.302283425310560907922075903 
2.302283454692886736366472037 
2.302283460985681176987300717 
2.302283462333405043293370893 
2.302283462622046224236987073 
2.302283462683864326156271219 
2.302283462697103670535595034 
2.302283462699939375507906936 
2.302283462700546653841485446 

4.59165349403582 
4.65266937815338 
4.66563137254676 
4.66843710204515 
4.66903785250679 
4.66916653116789 
4.66919409734649 
4.66920000018325 
4.66920126453840 
4.66920153530566 
4.66920159329811 
3.66920160571803 
4.66920160837802 
4.66920160894770 
4.66920160906935 
4.66920160909788 
4.66920160909268 

4.7073 
4.6198 
4.6704 
4.6686 
4.6680 
4.6700 
4.6687 
4.6695 
4.6690 
4.6693 
4.6691 
4.6692 
4.6831 
4.2652 

a See footnote to Table I. 
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Finally, one computes the functions (where ~7 = 0) 

so normalized that 

g.*(O) = 1, g.*O) = 0 

and observes convergence to g* (in the interval [0, 1] also to 13 places). 
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